您所在的位置:新闻中心 > 产品技术 > 详细内容

窄间隙焊接的应用现状及发展趋势

2008-02-26 08:41:50 我要评论(0) 字号:T | T
一键收藏,随时查看,分享好友!

窄间隙焊接的应用现状及发展趋势,综合介绍了各窄间隙焊接方法的优劣及应用现状,重点介绍了窄间隙埋弧焊这种先进的焊接方法,同时展望了窄间隙焊接方法在工业生产中的应用前景及其发展趋势。

    自1963年12月《铁时代》杂志上首次刊发由美国Battelle研究所开发的窄间隙焊接技术以来(术语“窄间隙焊接”于1966年5月第一次出现在《British Welding Journal》杂志上发表的由美国Battelle芯克的R P Meister和D C Matin合写的文章中1),窄间隙焊接技术作为一种更先进的焊接技术,立即受到了全世界各国焊接专家的高度关注,并相继投入了大量的研究2。V Y 马林从许多刊物中整理出了窄间隙焊接的下述特征3:①是利用了现有的弧焊方法的一种特别技术;②多数采用I形坡口,坡口角度大小视焊接中的变形量而定;③多层焊接;④自下而上的各层焊道数目相同(通常为1或2道);⑤采用小或中等热输入进行焊接;⑥有全位置焊接的可能性。
日本压力容器委员会施工分会第八专门委员会曾审议了窄间隙焊接的定义,并作了如下规定〔4〕:窄间隙焊接是把厚度30mm以上的钢板,按小于板厚的间隙相对放置开坡口,再进行机械化或自动化弧焊的方法(板厚小于200mm)。经过半个多世纪的研究和发展,人们对其焊接方法和焊接材料进行了大量的开发和研究工作,目前窄间隙焊在许多国家的工业生产中都发挥着巨大的作用。
 
窄间隙焊接技术的分类和原理
窄间隙焊接技术按其所采取的工艺来进行分类5,可分为窄间隙埋弧焊(NG-SAW)、窄间隙熔化极气体保护焊(NG-GMAW)、窄间隙钨极氩弧焊(NG-GTAW)、窄间隙焊条电弧焊、窄间隙电渣焊、窄间隙激光焊,每种焊接方法都有各自的特点和适应范围。
1.1  窄间隙埋弧焊
1.1.1  窄间隙埋弧焊简介
窄间隙埋弧焊出现于上世纪80年代,很快被应用于工业生产,它的主要应用领域是低合金钢厚壁容器及其它重型焊接结构。窄间隙埋弧焊的焊接接头具有较高的抗延迟冷裂能力,其强度性能和冲击韧性优于传统宽坡口埋弧焊接头,与传统埋弧焊相比,总效率可提高50%~80%;可节约焊丝38%~50%,焊剂56%~64.7%。窄间隙埋弧焊已有各种单丝、双丝和多丝的成套设备出现,主要用于水平或接近水平位置的焊接,并且要求焊剂具有焊接时所需的载流量和脱渣效果,从而使焊缝具有合适的力学性能。一般采用多层焊,由于坡口间隙窄,层间清渣困难,对焊剂的脱渣性能要求秀高,尚需发展合适的焊剂。
尽管SAW工艺具有如下优点:高的熔敷速度,低的飞溅和电弧磁偏吹,能获得焊道形状好、质量高的焊缝,设备简单等,但是由于在填充金属、焊剂和技术方面取得的最新进展,使日本、欧洲和俄罗斯等国家和地区在焊接碳钢、低合金钢和高合金钢时广泛采用NG-SAW工艺。
NG-SAW用的焊丝直径在2~5mm之间,很少使用直径小于2mm的焊丝。据报导,最佳焊丝尺寸为3mm。4mm直径焊丝推荐给厚度大于140mm的钢板使用,而5mm直径焊丝则用于厚度大于670mm的钢板。
NG-SAW焊道熔敷方案的选择与许多因素有关。
单道焊仅在使用专为窄坡口内易于脱渣而开发的自脱渣焊剂时才采用。然而,尽管使用较高的坡口填充速度,单道焊方案较之多道焊方案仍有一些不足之处。除需要使用非标准焊剂之外,它还要求焊丝在坡口内非常准确地定位,对间隙的变化有较严格的限制。对焊接参数,特别是电压的波动以及凝固裂纹的敏感性大,限制了这一工艺的适应性。单道焊在日本使用较多。
日本以外的其他国宝广泛使用多道焊,其特点是坡口填充速度相当低,但其适应性强,可靠性高,产生缺陷少。尽管焊接成本较高,但这一方案的最重要之处在于,允许使用标准的或略为改进的焊剂,以及普通SAW焊接工艺。
1.1.2  窄间隙埋弧焊的焊接特性
窄间隙焊接是在应用已有的焊接方法和工艺的基础上,加上特殊的焊丝、保护气、电极向狭窄的坡口内导入技术以及焊缝自动跟踪等特别技术而形成的一种专门技术。埋弧焊的优势和局限性就直接遗传给窄间隙埋弧焊技术,并在很大程度上决定着窄间隙焊接的技术特性、经济特性、应用特性和可靠性7
(1)埋弧焊时电弧的扩散角大,焊缝形状系数大,电弧功率大,再配合适当的丝-壁间距控制,无需像熔化极气体保护焊那样,必需采用较复杂的电弧侧偏技术,即埋弧焊方法的电弧热源及其作用特性,可直接解决两侧的熔合问题,这是埋弧焊方法在窄间隙技术中应用比例最高的重要原因。
(2)焊接过程中能量参数的波动对焊缝几何尺寸的影响敏感程度低。这是由于埋弧焊方法的电弧功率高,同样的电流波动量△I,在埋弧焊时所引起的波动幅度要小得多。
(3)埋弧焊过程中熔滴为渣壁过渡,液渣罩和固态焊剂的高效“阻挡”作用,根本不会产生飞溅,这是埋弧焊在所有熔化极弧焊方法中所独有的特性,正是窄间隙焊技术所全力追寻的。因为深窄坡口内一旦产生较大颗粒的飞溅,无论是送丝稳定性、保护的有效性还是窄间隙焊枪的相对移动可靠性都将难以保证。
(4)在多层多道方式焊接时,通过单道焊缝形状系数的调节,可以有效地控制母材焊接热影响区和焊缝区中粗晶区和细晶区的比例。通常焊缝形状系数越大,热影响区和焊缝区中的细晶区比例越大。这是由于焊道熔敷越薄,后续焊道对先前焊道的累积热处理作用越完全,通过一次、二次甚至三次固态相变,使焊缝和热影响区中的部分粗晶区转变成细晶区,这对提高窄间隙焊技术中焊态接头的组织均匀性和力学性能均匀性具有极其重要的意义。
埋弧焊方法依靠电弧自身特性而无需采取特别技术即可解决极小坡口面角度(0º~7º)条件下的侧壁熔合难题;焊缝几何尺寸对电弧能量参数波动不敏感;无焊接飞溅的技术特性无条件地遗传给窄间隙焊技术,从而极大地提高了窄间隙埋弧焊时送丝、送气及焊枪在坡口内移动的可靠性,这对保证窄间隙焊接的熔合质量和过程可靠性起了决定作用。然而,埋弧焊方法的局限性也原原本本地遗传给了窄间隙技术。
(1)由于狭窄坡口内单道焊接时极难清渣,使得窄间隙焊接时,必须采用每层2道(或3道)的熔敷方式,这将带来NG-SAW技术中,不可能把填充间隙缩到像NG-TIG,NG-GMAW那样小(10mm左右),而最小间隙一般也在18mm左右,这是NG-SAW在技术和经济上难以更理想化的根本原因。
(2)埋弧焊方法的诸多技术优势起源于大电弧功率,这将使得NG-SAW时焊接热输入增大,焊接接头的焊态塑、韧性难以提高,重要的NG-SAW接头常常需要焊后热处理方可满足使用性能要求。
(3)难以实施平焊以外的其它空间位置的焊接。

上一篇:“蓝鸟”再生修复焊接
下一篇:陶瓷基复合材料/金属焊接研究现状
说明:按键盘← →方向键 键直接翻页

原文:窄间隙焊接的应用现状及发展趋势返回产品技术首页

  1. 关于埋弧焊,看完这篇你就都懂了,全面又详细的资料
  2. 聊一聊那些该死的焊接缺陷

文章排行

本月本周24小时

热点专题

更多>>

合作媒体

电焊机杂志 申辉焊接社区 焊商中国 焊客家园 焊客